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Abstract 

In this paper, we introduce regime-switching in a two-factor stochastic volatility model to 
explain the behavior of short-term interest rates. The regime-switching stochastic volatility 
(RSV) process for interest rates is able to capture all possible exogenous shocks that could 
be either discrete, as occurring from possible changes in the underlying regime, or 
continuous in the form of `market-news' events. We estimate the model using a Gibbs 
Sampling based Markov Chain Monte Carlo algorithm that is robust to complex non-
linearities in the likelihood function. We compare the performance of our RSV model with 
the performance of other GARCH and stochastic volatility two-factor models. We 
evaluate all models with several in-sample and out-of-sample measures. Overall, our 
results show a superior performance of the RSV two-factor model.  
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methods. 
 
JEL Classification: G12  

                                                                 
♣ We acknowledge the comments of Arthur Warga, and seminar participants at the University of Houston, 
McGill University and the NFA 2000 Meetings in Waterloo. We thank Siddhartha Chib for providing us 
with very helpful computational tips. 



 2 

Regime -Switching Stochastic Volatility and Short-Term Interest Rates 
 
In this paper, we introduce regime-switching in a two-factor stochastic volatility model to 
explain the behavior of short-term interest rates. The regime-switching stochastic volatility 
(RSV) process for interest rates is able to capture all possible exogenous shocks that could 
be either discrete, as occurring from possible changes in the underlying regime, or 
continuous in the form of `market-news' events. We estimate the model using a Gibbs 
Sampling based Markov Chain Monte Carlo algorithm that is robust to complex non-
linearities in the likelihood function. We compare the performance of our RSV model with 
the performance of other GARCH and stochastic volatility two-factor models. We 
evaluate all models with several in-sample and out-of-sample measures. Overall, our 
results show a superior performance of the RSV two-factor model.  
 
Key Words: Short-term interest rates, stochastic volatility, regime switching, MCMC 
methods. 
 
JEL Classification: G12  

 

 



 3 

I.  Introduction 

The volatility of short-term interest rates plays a crucial role in many popular two-

factor models of the term structure. The level and the volatility of the short rate are 

commonly used as state variables in two-factor models. For example, Longstaff and 

Schwartz (1992) derive a two-factor general equilibrium model, with the short rate’s level 

and the short rate’s conditional volatility as factors. They show that a two-factor model 

improves upon a single factor model, which only uses the level of the short rate. They find 

that the conditional volatility factor provides additional information about the term 

structure that may be useful in pricing interest rate options and hedging interest rate risk. 

Similarly, Brenner et al. (1996) include a level effect and a GARCH effect into their 

interest rate model.  They find that models with both level and GARCH effects outperform 

those that exclude one of them. Note that a GARCH model displays a single continuous 

information shock; while in a stochastic volatility (SV) model there are two continuous 

information shocks. Following this more general formulation for the conditional variance, 

Anderson and Lund (1997) and Ball and Torous (1999) include a level factor and a 

stochastic volatility factor into the interest rate mean specification. They find a two-factor 

model with stochastic volatility performs better than the more traditional two-factor model 

with GARCH volatility. The information shocks in both GARCH and SV models are 

continuous. Ball and Torous (1995) build a two-factor model, but introducing discrete 

shocks from an underlying state variable that follows a two-state Markov process. In Ball 

and Torous (1995), the conditional volatility displays Hamilton’s (1989) regime-

switching.  

Introducing regime-switching in the volatility process of the short-term interest 

rate is consistent with previous studies that document a strong evidence for regime-

switching in short-term interest rates (see Hamilton (1988), Driffill (1992) and Gray 

(1996)). Regime-switching in the volatility process of the short rate has important 

implications for the dynamics of the yield curve and immunization strategies. As 

pointed out by Litterman, Scheinkman and Weiss (1991), the volatility of the short rate 

(for example, three-month T-Bill rate) affects the curvature of yield curve1. In 

                                                                 
1 See also Brown and Schaefer (1995). 
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particular, the volatility of the short rate has two counteracting effects on the yield 

curve. First, higher volatility of the short rate induces higher expected rates for the 

longer maturities (premium effect).  Second, higher volatility of the short-term interest 

rate increases the convexity of the discount factor function and, therefore, reduces the 

yields for longer maturities (convexity effect). The premium effect dominates at the 

short end of the yield curve, while the convexity effect dominates at the long end 

making the yield curve more humped. When regime switching is not considered, 

volatility shocks tend to be very persistent and, therefore, the convexity effect and  the 

hump in the yield curve could be more pronounced than they ought to be. Gray (1996) 

notes that there is evidence for 1) mean reverting high-volatility state with low 

volatility persistence, and 2) non-mean reverting low-volatility state with high volatility 

persistence in one-month U.S. T-Bill yields. This implies that the shape of the yield 

curve depends upon the dynamics of the short rate, its volatility and the latent volatility 

state. 

Regime-switching in the volatility process also has important implications for 

hedging. A trader should account for both continuous and discrete shocks to volatility 

in computing dynamic hedge ratios. While continuous shocks refer to market-news 

events, discrete shocks could refer to the high or low volatility states of the market, 

high or low liquidity in the market or high or low sentiment in the market.  

In this paper, we follow Ball and Torous (1995) and Anderson and Lund (1997). 

We introduce regime-switching in a two-factor model, where volatility follows a SV 

process. We model the volatility of short-term interest rates as a stochastic process whose 

mean is subject to shifts in regime. That is, our switching stochastic volatility for interest 

rates captures all possible exogenous shocks that could be either discrete, as occurring 

from possible changes in underlying regime, or continuous, in the form of “market news” 

events. We estimate our two-factor regime-switching stochastic volatility model for short-

term interest rates using a Gibbs Sampling based Markov Chain Monte Carlo algorithm. 

We conduct an extensive in-sample and out-of-sample evaluation of our two-factor model 

against other two-factor models. In-sample, our model performs substantially better than 

the GARCH based two-factor models and the single-state stochastic volatility two-factor 

models. Out-of-sample, the regime-switching stochastic volatility model tends to 
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outperform the other models. The out-of-sample forecasts from the regime-switching 

stochastic volatility model, however, are not that different from the single-state stochastic 

volatility model.  

The rest of the paper is structured as follows. Section II introduces our regime-

switching stochastic volatility (RSV) two-factor model. Section III examines the data set 

used in this paper. Section IV discusses the results from estimation. Section V presents the 

in-sample and out-of-sample comparative performance of the RSV model. Section VI 

summarizes and presents our conclusions. 

 

II.  Two-Factor Models and Regime Switching  

A common empirical finding in two-factor models is the high persistence in the 

conditional variance. For example, Brenner et al. (1996) estimate the persistence 

parameter in the conditional variance equation to be 0.82 using weekly three-month U.S. 

T-Bill data. Ball and Torous (1999) report persistence parameter to be 0.928 using 

monthly one-month U.S. T-Bill data, while Anderson and Lund (1997) report volatility 

persistence to be 0.98 for weekly three-month U.S. T-Bill data.  

High persistence in the conditional variance implies that shocks to the conditional 

variance do not die out quickly -i.e., current information has a significant effect on the 

conditional variance for future horizons. Lamoreux and Lastrapes (1990) show that high 

persistence could be related to possible structural changes that have occurred during the 

sample period in the variance process. They find that a single-regime GARCH 

specification leads to spurious high persistence under the presence of structural breaks. By 

allowing for possible regime switching in the data, high persistence observed in the single 

regime models seems no longer valid. Similar results have been documented by Hamilton 

and Susmel (1994), Cai (1994) and So, Lam and Li (1998).  

Hamilton (1988) and Driffill (1992), among others, find strong evidence for 

regime-switching in the U.S. short-term interest rates. Various macro-economic events 

were responsible for regime switching in the U.S. interest rates. These events include 

the OPEC oil crisis, the Federal Reserve experiment of 1979-82, the October 1987 

crash and wars involving U.S. and rest of the world. When short rates could switch 

randomly between different regimes –i.e., where each regime is associated with its own 
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mean and variance-, we may find high persistence in the data when we average data 

from different regimes. It is the possibility of a shift in the underlying regime that we 

explicitly incorporate in our short-rate process.  Next, we introduce a two-factor model 

that nests level and stochastic volatility effects.  

Consider the short-term interest rate process described below: 

In model (1), rt is the short rate and ht is the conditional variance of the short rate, α 

captures the levels effect in the model, µ is the stationary mean of the log conditional, φ1 

measures the degree of persistence of conditional variance, and ε t  and ηt  represent shocks 

to the mean and to the volatility, respectively. Both shocks are white noise errors, which 

are assumed to be distributed independently of each other. We call model (1) the Single-

state Stochastic Volatility (SSV) model. This model is used in Ball and Torous (1999) and 

in Anderson and Lund (1997). The estimation of SSV models involves the estimation of 

mean parameters {α0, α1} and variance parameters {α, β , ση, φ1}. Note that model (1) 

with a GARCH specification instead of a SV specification for the conditional volatility 

becomes the Brenner et al. (1996) model. 

 Now, let µ be a function of the latent state st, which follows a k-state ergodic 

discrete first-order Markov process as in Hamilton (1988).  That is, at a given point in 

time, the mean of the log volatility belongs to one of the k states. A k-state stationary 

transition probability matrix governs the dynamics of the transition from one state to the 

next state. This implies that the latent volatility, ht, is driven by a continuous shock, ηt, as 

in (1) above and also by a discrete shock st  that takes on discrete integer values {1, 2, ..., 

k}.  We can also think of our latent volatility as a mixture of k densities, where each 

density corresponds to a single state. The latent volatility at a given time comes from a 

single density, which is decided by an underlying k-state Markov process. That is, our  

Regime-switching Stochastic Volatility  (RSV) model is given by: 
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where µs(t) refers to the state dependent  mean of conditional volatility. The parameter γ 

measures the sensitivity of the mean with respect to the underlying state and is constrained 

to be positive.  The underlying state st can assume k possible states, i.e. one of {1,2, .....,k} 

where higher values of st lead to higher intercept terms in the log variance equation. As an 

identification condition, we require each regime to correspond to at least one time point. 

In addition, and mainly for convenience, we set the level parameter α=0.5, which has been 

used in many previous papers.2 This assumption also avoids potential non-stationary 

problems associated with α > 1, as shown in Gray (1996) and Bliss and Smith (1998). The 

estimation of the RSV model involves estimation of mean parameters {α0, α1}, variance 

parameters {β , γ, ση, φ1}, and the transition probability parameters {p01, p10}, where pij 

represents the transition probability of going from state i to j.  

In summary, the RSV model specification combines a level effect and a 

conditional volatility process that captures all possible exogenous shocks. Note that the 

RSV model reduces to the SSV model when there is no regime shift in the data -i.e., when 

γ is restricted to zero. 

A closely related paper is So, Lam and Li (1998), which uses a switching 

stochastic volatility model to explain the persistence in the log volatility for S&P 500 

index weekly returns.  Using a three-state model (with high, medium and low volatility 

states), So et al. (1998) find that the volatility state is less persistent, while the low 

volatility state is more persistent.  Our model slightly differs from So et al. (1998). In our 

RSV model, the drift term of the conditional variance is a function of both current and last 

period states, while in So et al. (1998) the conditional variance is a function only of the 

current period state. This difference in our volatility specifications also leads to 

differences in our likelihood functions and, hence, in our posterior densities.  

Estimation of the RSV model involves estimating two latent variables -i.e., ht and 

st in addition to the model parameters. In the presence of two latent variables, the 

likelihood function for the model needs to be integrated over all the possible states of the 

two latent variables. Jacquier, Polson and Rossi (1993) show that maximum likelihood 

based methods tend to fail under complex specifications of the likelihood function. 

Consequently, we resort to Monte Carlo Markov Chain (MCMC) methods to estimate the 

                                                                 
2 For example, Cox, Ingersol and Ross (1985) and Anderson and Lund (1997). 
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RSV model.3  Note that Model 3 can easily incorporate more complicated dynamics. For 

example, we can make ση a function of a latent state, or we can specify an ARMA 

structure for the conditional mean equation (with parameters driven by the latent state), or 

we can consider multiple regimes. Our estimation technique can accommodate all these 

extensions.   

 

III.  Data 

 The data consists of annualized yields based on weekly observations of three-

month U.S. T-bill data for the period 01/06/60 to 06/03/98 (2003 weekly observations) 

and is obtained from the Chicago Federal Reserve’s database. Wednesday’s rates are used 

and if Wednesday is a trading holiday, then, Tuesday's rates are used. Similar data sets 

have been previously used by Anderson and Lund (1997) and Gray (1996).  

Figure 1 plots the annualized yields and also the first differences in yields based on 

weekly observations of three-month T-Bill data. There are several episodes of large 

fluctuations in nominal interest rates: the oil shocks during 1969-71 and 1973-75, the 

Federal Reserve monetary experiment of 1978-82, and the market crash of 1987. This 

observation suggests more than a single regime in the data. For instance, we can think of a 

high volatility regime during the periods cited above and a low volatility regime during 

rest of the periods. We could allow for an additional regime, as in Hamilton and Susmel 

(1994), to capture outliers in the data. Following the existing switching literature, 

however, we limit ourselves to two regimes for the underlying volatility. 

The weekly three-month T-Bill rate (rt) is non-stationary4. First differencing makes 

the data stationary. Using Box-Jenkins methods, an ARIMA(1,1,0) model seems to 

provide a satisfactory fit for the autocorrelations in the yields. Following Pagan and 

Schwert (1990) and Ball and Torous (1995, 1999), we fit the RSV model (2) to the 

residuals (RESt) from regressing ∆rt on a constant and ∆rt-1. For the purpose of estimation 

and comparison to alternative volatility models, we write our mean adjusted version of the 

RSV model as  

                                                                 
3 Appendix A gives the details of our MCMC estimation and Appendix B presents the results of a 
simulation experiment using our estimation method. 
 
4 ADF tests could not reject the null of a unit root in the yield series.  
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where all the assumptions on the error terms made in (2) still hold. Again, note that when 

we set γ to zero, the RSV model reduces to the SSV model. 

 Table 1 presents the summary statistics of the data. Changes in yields, ∆rt, seem to 

be left skewed indicating that periods of high T-Bill returns were less common compared 

to periods with low returns. There is also a strong evidence of kurtosis in the return series. 

The Ljung-Box statistic suggests that there is a high degree of autocorrelation for the raw 

yields (rt). There is a very high persistence in the raw series. On the other hand, ∆rt series 

seems to be much less persistent and is characterized by low autocorrelations. High 

autocorrelation in the two series (∆rt)2 and log(∆rt)2 suggests the kind of non-linearity in 

the data that can be explained by a SV model. Table 2 presents the results from GARCH 

tests on the data. We report the Ljung-Box statistic for the squared residuals (RESt
2) at 

various lags. The null of no GARCH effects is strongly rejected by the data.  

 

IV.  Results from the Stochastic Volatility models 

To benchmark our results, first, we ignore the possibility of regime-switching in 

the data. The results from the MCMC estimation of the SSV model are presented in Table 

3, where the parameter set is θ = {β , φ, ση}. The persistence parameter φ is very high 

indicating that the half-life of a volatility shock, measured as -ln(2)/ln(φ), is about fourteen 

weeks. Standard errors for the parameters are small indicating that parameters are highly 

significant.  Figure 2 plots the posterior densities of the parameters. All the parameters 

have symmetric densities while half-life density is right skewed indicating that half-lives 

longer than fourteen weeks are more common.  

We, next, estimate the RSV model for our weekly interest data set. Table 5 

presents the prior and posterior parameter estimates of the parameter set θ in our model, 

where θ = {β , γ, φ, σ η, p01, p10}. Standard errors for the parameters are small as before. 
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The persistence parameter, φ, drops significantly to 0.628 from 0.951 in the SSV model.  

This implies that a switch in the latent regime creates a high persistence in volatility and 

confirms the earlier results of Hamilton and Susmel (1994), Cai (1994) and So, Lam and 

Li (1998). The distribution of φ is left skewed with a median 0.647 (see Figure 3), 

implying that even lower persistence than 0.628 is common.  The transition probabilities, 

p00 and p11, are estimated as 0.994 and 0.966. These estimates are comparable to 0.9896 

and 0.9739 respectively reported in Gray (1996) and 0.9878 and 0.9402 respectively 

reported in Cai (1994). Our results imply that the effect of a volatility shock is much more 

persistent in the low volatility state than in the high volatility state. A volatility shock lasts 

on average of, at least, 100 weeks in the low volatility state compared to about 30 weeks 

in the high volatility state, where duration of the shock is obtained as (1-pii)
-1.  Figure 3 

plots the Gaussian kernel densities for the posterior parameter estimates. The posterior 

densities seem to be symmetric for β  and γ and right skewed for σ η (with a median 0.897).  

Figure 4 plots the Gibbs parameter estimates from 1200 runs (details in appendix A). 

Gibbs runs indicate no autocorrealtion in successive draws. Figure 5 plots autocorrelations 

for the parameters. The autocorrelations become insignificant at very early lags implying 

that the Gibbs draws are drawn at random.    

Tables 4 and 6 present the correlations between the parameters. Both Tables 4 and 

6 report strong negative correlation between β  and φ, and φ and ση.  Table 6 also reports 

strong positive correlations between β  and γ, and β  and σ η.  Together, these results imply 

that 1) as the variance persistence decreases the unconditional variance -i.e., the long-run 

mean of ln(ht)- increases, 2) large volatility shocks are not as persistent as small volatility 

shocks and 3) large volatility shocks tend to be associated with higher long-run mean 

compared to small volatility shocks. 

The first two panels of Figure 6 plot the T-Bill yields and the residuals from a 

regression of ∆rt on a constant and ∆rt-1, respectively. The third panel plots the underlying 

annualized volatility (generated by a multi-move simulation smoother), and the fourth 

panel plots the simulated smoother probabilities of being in high volatility state, i.e., 

Prob(st =1). Following Hamilton (1988), we consider an observation as belonging to state 

one if the smoothed probability is higher than 0.5. The simulation smoother shows periods 

of high volatility during the oil shocks of 1969 and 1973, the 1979-83 Federal Reserve 
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monetary experiment, and the market crash of 1987. The smoother probabilities indicate 

that there is a large probability that the T-Bill yields during 1969, 1973, 1979-82, and 

1987-88 belong to a high volatility regime. This dating is in agreement with the dating 

reported by Cai (1994) and Gray (1996). 

   

V.  Performance of the RSV Model 

We conduct an extensive evaluation of the in-sample and out-of-sample 

performance of the SV two-factor models and other two-factor models, based on the 

GARCH family of models. We consider three popular GARCH models: GARCH(1,1) 

model, GARCH(1,1)-L model -i.e., GARCH(1,1) with an asymmetry effect of negative 

lagged errors, to capture the leverage effect- and  EGARCH(1,1) model. The first GARCH 

model is the formulation used by Longstaff and Schwartz (1992). The second and third 

GARCH models retain a leverage effect, as in Brenner et al. (1996). All the GARCH 

models are specified to include a level effect (for specifications see Table 7). The MLE 

results for the three GARCH models are presented in Table 7. There is evidence for a 

leverage effect based on the significant t-statistic for κ in the GARCH(1,1)-L  model and 

the significant t-statistic for δ2 in the EGARCH(1,1) model. The leverage effect, however, 

is small relative to the usual size found in equity returns. All the estimates in the 

conditional variance equation are significant for the three models. Note that the estimates 

show the usual high persistence in the conditional variance. 

We extract one-week(step)-ahead in-sample forecast variances from the single 

state and regime-switching two-factor models and compare them to other models. In 

addition to the full sample period, 01/06/60-06/03/98, we consider three sub-sample 

periods. The three sub-sample periods are: (1) 01/06/60-31/12/78, (2) 01/06/60-31/12/82, 

and (3) 01/06/60-31/12/91. The first sample includes the oil shocks, the second sample 

includes the Fed monetarist experiment of 1979-82, and the third sample includes the 

October1987 stock market crash. Based on the estimates for the three sub-samples, we 

estimate out-of-sample forecasts until the end of the sample. We also consider shorter 

samples and shorter out-of-sample forecast periods. As an example, we include a fourth 

sample 01/01/76-31/12/87, which allows an evaluation of the performance of the model in 
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a shorter data set. This forth sample has two well defined spells of high volatility: the Fed 

experiment and the October 1987 stock market crash.  

Figures 7 and 8 show the in-sample (annualized) conditional volatilities implied by 

all the models. The conditional volatilities from two-factor models are relatively less 

smooth compared to those from the GARCH type models. This is because the two-factor 

models are more sensitive to shocks. For example, the RSV two-factor model picks up an 

outlier in late 1982, which goes undetected by the other models.  

Table 8 shows the likelihood function for all the models. The RSV has the biggest 

likelihood. Unfortunately, the GARCH models and the SSV models are not nested. 

Therefore, standard likelihood ratio tests are not correct. In addition, standard likelihood 

ratios cannot be used for the SSV model and the RSV model since there are unidentified 

parameters under the null hypothesis of no-switching -see Hansen (1992). Therefore, 

Table 8 shows four different in-sample evaluation criteria for the different models. The 

stochastic volatility models perform better than all the GARCH models and the SSV 

model. In particular, the RSV model has a higher likelihood function, higher adjusted R2, 

and higher AIC/SBC values relative to the GARCH models and the SV model. Table 8 

also reports posterior odds ratios of the competing model with respect to the constant 

variance model –see Kim and Kon (1994). If the odds ratio is positive, then the competing 

model is “more likely” to have generated the data than the constant variance model. The 

model with the highest value of posterior odds ratio represents the “most likely” 

competing model specification. The stochastic volatility models have higher odds ratios 

than GARCH models. In particular, the RSV model has an odds ratio at least 56% higher 

than the other competing models. Among the two-factor GARCH models, with the 

exception of the Adjusted R2 criteria, the E-GARCH(1,1) performs better than the other 

models for all the evaluation measures. The E-GARCH(1,1) is also the model used by Ball 

and Torous (1999) to evaluate the in-sample evaluation of the SSV model. Based on these 

considerations, the E-GARCH(1,1) is the GARCH model we select to evaluate the out-of-

sample performance of the SV models. 

Table 9 presents in-sample and out-of-sample one-step ahead forecasts for all the 

models for the four different sub-samples. We present the mean squared errors (MSE) and 

mean absolute errors (MAE) for the SSV model, the RSV model, a constant volatility 
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model, and for the best performing GARCH model, the E-GARCH(1,1). We keep a 

constant volatility model in our out-of-sample comparison, given the results in Figlewski 

(1997), where the constant volatility performs well relative to GARCH models. Table 9 

shows that the RSV model tends to outperform the GARCH and SSV models. Consistent 

with the in-sample results of Table 8, the RSV model always beats in-sample the other 

formulations. Out-of-sample, the RSV tends to do better than the EGARCH and SSV 

model. The out-of-sample performance of the RSV model, however, is similar to the out-

of-sample performance of the SSV model. Consistent with Figlewski (1997), the constant 

variance model shows a good out-of-sample performance, especially in the MSE metric. 

Note that the constant variance model in the first sub-sample beats all the other models. 

The E-GARCH model never performs better than the SV models. The last sub-sample 

presents a short period of out-of-sample forecasts, only one year. Again, the RSV model is 

the dominating model.5  

 

VI. Conclusions 

In this paper, we introduce regime-switching in a stochastic volatility model to 

explain the behavior of short-term interest rates. The regime-switching stochastic 

volatility process for interest rates captures all possible exogenous shocks that are 

either continuous in the form of `market-news' events or discrete as occurring from 

possible changes in underlying regime. We introduce the regime-switching stochastic 

volatility process in a two-factor model for the short-term interest rate. We estimate the 

two-factor model using a Gibbs Sampling based Markov Chain Monte Carlo algorithm 

that is robust to the usual non-linearities in the likelihood function. We find that the 

usual high volatility persistence is substantially reduced by the introduction of regime-

switching. We conduct an extensive in-sample and out-of-sample evaluation of several 

two-factor models. We use several sub-samples and different evaluation criteria to 

compare the RSV model with other GARCH models and single-state stochastic 

volatility model. Overall, our results are very supportive of our RSV two-factor model. 

                                                                 
5 For the fourth sample, we also calculate (not reported) out-of-sample forecasts for a two-year period and a 
ten-year period. Overall, the results are similar, although as the out-of-sample forecasting period is extended, 
the performance of the SSV model becomes very similar to the performance of the RSV model. 
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In-sample and out-of-sample, the RSV model tends to outperform all the other two-

factor models.  
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Appendix A:  The Gibbs Algorithm for Estimating RSV Model 

In the RSV model (2), we need to estimate the parameter vector θ ={β , γ, ση, φ1, 

p01, p10} along with the two latent variables Ht = {h1,...,ht} and St ={s1,….,st}. The 

parameter set therefore consists of ω = {Ht, St, θ} for all t. We use Bayes theorem to 

decompose the joint posterior density as follows. 

)()(),()(),,( θθθθ fSfSHfHYfSHf nnnnnnn ∝  

  We next draw the marginals f(Ht|  Yt, St  ,θ), f(St|Yt,Ht ,θ) and f(θ|Yt, Ht St), using the 

Gibbs sampling algorithm described below: 

Step 1:  

Specify initial values θ(0) ={β1
(0), γ(0), σ η,(0) ,φ(0), p01

(0)
, p10 

(0)
  }. Set i =1. 

 

Step 2:  

Draw the underlying volatility using the multimove simulation sampler of De Jong and 

Shephard (1995), based on parameter values from step 1. The underlying volatility vector 

for all the data points is obtained as a function of underlying disturbances that are drawn 

as a block using a simulation smoother. Consider the RSV model (3), reproduced below:  
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2) can be approximated by a mixture of seven normal variates (Chib, 

Shephard, and Kim (1998)).  
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Now, (A-1) can be written as 

[ ] 3)-(A                                                          )ln()ln()ln( 1
2 ikzrhRES ttttt =++= −  

where kt  is  one of the seven  underlying densities that generates zt. Once the underlying 

densities kt, for all t, are known, (A-3) becomes a deterministic linear equation and along 

with the RSV model (3) can be represented in a linear state space model. Next, apply the 

De Jong and Shephard (1995) simulation smoother to extract the underlying log volatility 

from the observed data. 

 

Step 3:  

Based the on output from steps 1 and 2, the underlying kt in (A-3) is sampled from  

normal distribution as follows -see Chib,  Shephard and Kim (1998): 

[ ] ( ) 4)-(A          k         i      ,2704.1)ln()ln(),ln( 22 ≤−+∝= iitiNittit vmhzfqhyzf  

For every observation t, we draw the normal density from each of the seven normal 

distributions {kt = 1,2,..,7}. Then, we select a “k” based on draws from uniform 

distribution.  

 

Step 4:  

Based on the output from steps 1, 2 and 3, we draw the underlying Markov-state 

following Carter and Kohn (1994). We use the smoother for the above state-space model 

(3), to derive the vector of underlying state variable st, t = 1,2,...,n  

 

Step 5: 

Cycle through the conditionals of parameter vector θ ={β , γ, ση, φ1, p01, p10} for the 

volatility equation using Chib (1993), using output from steps 1-4. Assuming that f (θ) can 

be decomposed as:  

5)-(A                             ),,,,(),,,(                           

),,,(),,,(),,,(),,(

1001

2
2

ijpnnnnnn

nnnnnnnnnnnn

SHYppfSHYf

SHYfSHYfSHYfSHYf

−−

−−−∝

θθφ

θσθγθβθ

φ

σγβ
 

where θ-j refers to the θ parameters excluding the jth parameter. The respective 

conditional distributions (normal for β , γ and φ, inverse gamma for σ2 and beta for pij) are 
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described in Chib (1993).  The parameter γ is drawn using an inverse CDF with the 

restriction that it is positive. The prior means and standard deviations are specified in 

Tables 3 and 5. 

 

Step 6: Go to step 2. 

 

Estimation of SSV model (2) has the same steps as in RSV model (3), except that we do 

not have to draw the latent states and transition probabilities. For the Gibbs estimation, we 

leave out the first 4000 draws (i.e., burn–in iterations are 4000) and sample from the next 

6000 draws. We choose every fifth observation to minimize, and if possible eliminate, any 

possible correlation in the draws. Our effective number of draws therefore drops to 1200 

(i.e., effective test iterations are 1200). We construct 95% confidence intervals for the 

parameters, based on 1200 draws. We construct the standard errors for the parameters 

using the batch-means method -see Chib (1993). We estimate the density functions for the 

parameters using the Gaussian kernel estimator -see Silverman (1986). 
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Appendix B: Monte Carlo Experiment with the Gibbs Algorithm  

We perform a Monte Carlo experiment of the RSV model (3), without level effects. That 

is:  

 

Using the transition probabilities p01 and p01 , we generate a state vector (with  values 0 or 

1) of size 1000. Using the state vector and the “true” parameters β , γ, ση, and φ1, we 

generate stochastic volatility, ln(ht).  Based on the above model, the stochastic volatility 

series is used it to generate the residual vector, RESt. (All the true parameter values used 

in the simulation are listed below.)  Then, taking RESt as given, we estimate the parameter 

set θ ={β , γ, ση, φ1, p01, p10} using the MCMC algorithm as explained in appendix A. We 

set the number of burn–in iterations equal to 4000 and the number of effective test 

iterations equal to 1200. Thus, we construct the 95% confidence intervals for the 

parameters based on 1200 draws. We construct the standard errors for the parameters 

using the batch-means method -see, Chib (1993). The results are reported in Table B.1.  

 

Table B.1 
Results from a Monte Carlo experiment 

 
T ( sample size) :1000     

parameter True 
values 

Prior Values Posterior Values 

  Mean Std. deviation Mean ( std. Error) Std. deviation 95% Confidence Interval 
β 0.7 0 50 0.759 ( 0.003) 0.112 ( 0.500- 0.986) 
γ 1.5 1 50 1.477  (0.018) 0.191 (1.051 -1.819) 
φ  0.4 0 1 0.391 (0.005) 0.085 (0.202- 0.054) 
σ2 0.6 - - 0.733  ( 0.005) 0.109 (0.538 - 0.976) 
p01 0.01 0.2 0.16 0.011  (0.000) 0.007 (0.003-0.035) 
p10 0.04 0.2 0.16 0.074  (0.003) 0.036 (0.026-0.166) 

*Prior distribution of σ2  (inverse gamma)  is improper 

We find that the posterior means of parameters are quite close to the true values. 

The standard errors are small, indicating a high precision of the posterior means. For the 

variance and the transition probability p10, the posterior means are slightly higher than true 

values. However, they clearly lie within the 95% confidence bounds.  
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Figure B.1 shows the latent volatility and states. The top panel consists of 

simulated residuals RESt. The second panel presents both the true and latent volatility, the 

latter obtained using the simulation smoother. The third panel presents the true states –i.e., 

either 0 or 1- and smoother probabilities of being in the high volatility state. From the 

second and third panels, we see that the smoother volatility and probabilities closely 

approximate their true counterparts.       

 
  

Figure B.1. Simulated Yields and Corresponding Latent Volatility and States 
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Table 1 

Summary statistics for weekly interest rates on 3-month T-Bills for the period 1/06/60 to 06/03/98 
 

 rt ∆rt (∆rt )2 log (∆rt )2 
Mean 6.0436  0.00018962 0.048828 -5.6721 

Standard error 0.060171 0.0049374 0.0044547 0.057084 
     

Variance 7.2591 0.048852 0.039769 6.5302 
Standard error 0.31925  0.0044540 0.0083140 0.20325 

     
Skewness 1.2504  -1.0377 8.3522 -0.25630 

Standard error 2.0700 0.0055073  0.019342  0.71194 
     

Kurtosis 4.8781 17.658  88.586  2.9414 
Standard error 22.157 0.0086464 0.049010 6.6579 

     
Ljung-Box (24) 1733.4 12.018 100.96 190.78 

 
Notes: 
• Ljung-Box (24). Ljung-Box statistics calculated with 24 lags. χ2

(24) critical value for a 95% 
confidence level is 36.4.  

 
 
 

Table 2 
Tests for GARCH effects in weekly interest rates on 3-month T-Bills for the period 1/06/60 to 

06/03/98 
 

Lag   Ljung-Box Statistic χ2
(lag) statistic  

( 95% confidence level) 
6 186.68 12.6 
12 137.30 21 
18 109.40 28.9 
24 104.47 36.4 
36 104.79 55 

 
Notes: 
•  We obtain the residuals (RES t) from regressing ∆rt on a constant and  ∆rt-1 and report the Ljung-

Box statistics  for the squared residuals  at  different lags. The Ljung-Box statistic for squared 
residuals is highly significant at all lags.
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Table 3 

Results from the MCMC estimation of the Single -State Stochastic Volatility  (SSV) model 
using weekly 3-month T-Bill yields for the period 01/06/60 to 06/03/98 

 
parameter Prior Values Posterior Values 

 Mean Standard  
Deviation 

Mean ( std. error) Standard 
Deviation 

95% Confidence Interval 

β 0.05 1 2.831 (0.020) 0.219 (2.366- 3.235) 
φ  0 10 0.951 (0.000) 0.009 (0.932- 0.969) 
σ2 - - 0.190 (0.002) 0.023 (0.150- 0.241 

 
Notes: 
• The SSV model used in Table 1 (Model 1): 

• The sample size is 2003. Prior distribution of σ2  (inverse gamma) is improper. Details about the 
model estimation are in appendix A. 

 
 
 
 

Table 4 
Correlation matrix of the parameters for the SSV model using weekly 3-month T-Bill yields 

for the period 01/06/60 to 06/03/98 
 

Parameters  β σ2 φ  
β 1 0.030   -0.202   
σ2 0.030  1 -0.551 
φ  -0.202 -0.551 1 
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Table 5 

Results from MCMC estimation of the Regime-switching Stochastic Volatility (RSV) model 
using weekly 3-month T-Bill yields for the period 01/06/60 to 06/03/98 

 
Parameters Prior Values Posterior Values 

 Mean Standard 
Deviation 

Mean ( std error) Standard 
Deviation 

95% Confidence 
Interval 

β 0 50 2.580 (0.001) 0.098 (2.378-   2.769) 
γ 1 50 2.746 (0.022) 0.247 (2.258 -3.220) 
φ  0 1 0.628 (0.001) 0.046 (0.526- 0.708) 
σ2 - - 0.931  (0.002) 0.123 (0.726-1.207) 
p01 0.2 0.16 0.006 (0.001) 0.003 (0.002- 0.013) 
p10 0.2 0.16 0.034 (0.001) 0.013 (0.014- 0.063) 

 
  Notes: 
• The RSVmodel is estimated in Table 5 (Model 3): 

 
• The sample size is 2003. Prior distribution of σ2  (inverse gamma) is improper. Details about the 

model estimation are in appendix A. 
. 
 

Table 6  
Correlation matrix of the parameters for the RSV model using weekly 3-month T-Bill yields 

for the period 01/06/60 to 06/03/98 
 

parameters  β γ σ2 φ  a :p01  B: p10 
β 1.000   0.606  0.501  -0.530 0.077 0.170 
γ 0.606  1.000 0.424  -0.373 -0.179 -0.105 

σ2 0.501  0.424  1.000 -0.766  0.236 0.340 
φ  -0.530 -0.373 -0.766  1.000 -0.240  -0.382 

a :p01  0.077 -0.179 0.236 -0.240  1 0.414  
b: p10 0.170 -0.105 0.340 -0.382 0.414  1 
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Table 7 
Results from MLE estimation of GARCH models using weekly 3-month T-Bill yields for the 

period 01/06/60 to 06/03/98 
 α0 κ δ1 δ2 α1 β1 

GARCH(1,1) 0.7763 - - - 0.0231 0.8514 
 (5.110) - - - (7.164) (47.012) 

GARCH(1,1)-L 0.7866 0.0094 - - 0.0192 0.8469 
 (5.150) (2.566) - - (6.5007) (46.993) 

EGARCH(1,1) 0.0536 - 0.1441 -0.0193 - 0.9441 
 (2.8021) - (11.5671) (-3.4341) - (128.91) 

 
Notes: 
• t-statistics are reported in parenthesis. 
• Model specifications: 
GARCH(1,1) with level effect: 

GARCH(1,1)-L with level effect : 

EGARCH(1,1) with  levels effect: 
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Table 8 
In-sample comparison of alternative models for the entire sample period  

01/06/60 to 06/03/98 (sample size: 2003) 
 

 number of 
parameters 

Log-
Likelihood 

AIC SBC Adj R2 Odds 
ratios 

Constant Variance 1 -8589.23 -8590.23 -8593.03 -0.477 - 
GARCH(1,1) 3 -7965.81 -7968.81 -7977.22 0.222 623.42 

GARCH(1,1)-L 4 -7962.05 -7966.05 -7977.25 0.205 627.18 
EGARCH(1,1) 4 -7953.13 -7957.13 -7968.34 0.220 636.1 

SSV model 3 -7825.64 -7828.64 -7837.04 0.405 763.59 
RSV model 6 -7397.39 -7401.39 -7412.60 0.602 1191.84 

 
Notes:  
• AIC: log-likelihood value less number of parameters 
• SBC: log-likelihood value less 0.5 log (T*number of parameters )  

where T: sample size 

• MSE:     
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• Adj R2: Adjusted R2 is calculated for the regression ),~N( uubhas tttt 10   Re 2 ++=    { t= 1,…..N}, 

where RESt are the residuals from regressing ∆rt against constant and ∆rt-1  and  ht  { t= 1,…..N} are 
conditional volatility  estimates 

• Odds ratio: the posterior odds ratio of alternative specifications relative to the constant variance. This is 
obtained as difference of the Schwartz Bayesian Criterion (SBC) of each competing model and the SBC of the 
constant variance model –see, Kim and Kon (1994). 

• All the models used here are described in Tables 3-7.  
 



Table 9 
In-sample and out-of-sample comparison of alternative models for three different sample periods  

 
Sample 1      

 
 

In-sample (T: 990) 
01/06/60-31/12/78 

Out-of-sample (T:1012) 
01/01/79-06/03/98 

 MSE MAE Adj. R2 MSE MAE 
Const. Variance 0.0109 0.0266 -0.0495 0.0702 0.0682 
EGARCH(1,1) 0.0104 0.0255 0.104 0.0707 0.0694 

SSV model 0.0104 0.0255 0.409 0.0706 0.0688 
RSV model 0.0099 0.0243 0.615 0.0705 0.0685 

      
Sample 2      

 
 

In-sample (T: 1199) 
01/06/60-31/12/82 

Out-of-sample (T:803) 
01/01/83-06/03/98 

 MSE MAE Adj. R2 MSE MAE 
Const. Variance 0.0661 0.0714 -0.0671 0.0025 0.0132 
EGARCH(1,1) 0.0621 0.0679 0.210 0.0027 0.0130 

SSV model 0.0628 0.0680 0.485 0.0026 0.0126 
RSV model 0.0616 0.0668 0.612 0.0026 0.0123 

      
Sample 3      

 
 

In-sample (T: 1668) 
01/06/60-31/12/91 

Out-of-sample (T:334) 
01/01/92-06/03/98 

 MSE MAE Adj. R2 MSE MAE 
Const. Variance 0.0489 0.0561 -0.0562 0.0002 0.0067 
EGARCH(1,1) 0.0461 0.0538 0.212 0.0001 0.0049 

SSV model 0.0464 0.0538 0.481 0.0001 0.0047 
RSV model 0.0458 0.0532 0.603 0.0001 0.0047 

      
Sample 4      

 
 

In-sample (T: 626) 
01/01/76-31/12/87 

Out-of-sample (T:104) 
01/01/88-31/12/89 

 MSE MAE Adj. R2 MSE MAE 
Const. Variance 0.1133 0.1081 -0.0993 0.0003 0.0119 
EGARCH(1,1) 0.1090 0.1054 0.221 0.0005 0.0128 

SSV model 0.1082 0.1051 0.494 0.0005 0.0124 
RSV model 0.1031 0.1014 0.554 0.0003 0.0115 

 
 Notes: 
• T: refers to the sample size. 
• The best model is highlighted. 

• MSE:     
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• The estimated coefficients from the in-sample period are used to generate one-week (step) ahead conditional 
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volatility estimates for the out-of-sample period. One-step ahead conditional volatility forecasts are generated 
 using the following equations (based on the GARCH models defined under Table 7 and  the SV models 2 and 3):  

 
 
GARCH(1,1): 

 
GARCH(1,1)-L: 
 

 
EGARCH(1,1): 
 

 
SSV  model: 

 
RSV  model: 

 

11

0
0

0
2

|1
1

110
2

|

1

)()(

βα
α

σβασ

−−
=

−++= +
−

+

w

where

ww tt
s

tst

2
1

)()
2

(

11

0
0

0
2

|1
1

110
2

|

κβα

α

σ
κ

βασ

−−−
=

−+++= +
−

+

w

where

ww tt
s

tst

1

0
0

0
2

|1
1

10
2

|

1

))(ln()()ln(

β
α

σβσ

−
=

−+= +
−

+

w

where

ww tt
s

tst

))(ln()()ln( 2
|1

1
1

2
| µσφµσ −+= +

−
+ tt

s
tst

[ ]
[ ] )|1()|1()ln(                 

)|0()|0()ln()ln(

11
2

|

11
2

|
2

|

−++−+++

−++−++++

=×=

+=×==

ststststtst

ststststtsttst

ssprsspr

ssprsspr

σ

σσ



 30 

 
 

Figure 1. Weekly 3-month T-Bill percentage yields  
(Sample: 01/06/60 to 06/03/98) 
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Figure 2. Posterior Density Plots for Parameters of the SSV Model 

 
Figure 3. Posterior Density Plots for Parameters  of the RSV model 
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Figure  4. Gibbs Run for Parameters of the RSV Model 

 
Figure 5. Autocorrelation Functions for Parameters of the RSV Model 
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Figure 6. T-Bill Yields and Corresponding Latent Volatility and States 
(Sample: 01/06/60 to 06/03/98) 
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Figure 7. Comparison of in-sample Conditional Volatilities Across Different Models 

(Sample: 01/06/60 to 06/03/98) 

 
 
 


