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Abstract
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continuous in the form of “market-news events. We estimate the model using a Gibbs
Sampling based Markov Chain Monte Carlo agorithm that is robust to complex non-
linearities in the likelihood function. We compare the performance of our RSV model with
the performance of other GARCH and stochastic volatility two-factor models. We
evauate al modds with severd in-sample and out-of-sample measures. Overal, our
results show a superior performance of the RSV two-factor modedl.
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|. Introduction

The volaility of short-term interest rates plays a crucid role in many popular two-
factor models of the term dructure. The levd and the volaility of the short rate are
commonly used as date vaiables in two-factor models. For example, Longstaff and
Schwartz (1992) derive a two-factor generd equilibrium mode, with the short rate's leve
and the short rat€'s conditiond voldility as factors. They show that a two-factor mode
improves upon a sngle factor modd, which only uses the level of the short rate. They find
that the conditiona volatlity factor provides additiond information about the term
dructure that may be ussful in pricing interest rate options and hedging interest rate risk.
Smilaly, Brenner e d. (1996) include a leve effect and a GARCH effect into their
interest rate modd. They find that models with both level and GARCH effects outperform
those that exclude one of them. Note that a GARCH modd displays a single continuous
information shock; while in a sochagtic volaility (SV) modd there are two continuous
information shocks. Following this more generd formulation for the conditiona variance,
Anderson and Lund (1997) and Bdl and Torous (1999) include a leve factor and a
dochaedtic voldility factor into the interest rate mean specification. They find a two-factor
mode with stochadtic volatility performs better than the more traditiond two-factor model
with GARCH volaility. The information shocks in both GARCH and SV modds ae
continuous. Bal and Torous (1995) build a two-factor modd, but introducing discrete
shocks from an underlying date variable that follows a two-state Markov process. In Bal
and Torous (1995), the conditiond volaility disolays Hamilton's (1989) regime-
switching.

Introducing regime-switching in the voldility process of the short-term interest
rate is condgent with previous sudies that document a srong evidence for regime-
switching in short-term interest rates (see Hamilton (1988), Driffill (1992) and Gray
(1996)). Regime-switching in the voldility process of the short rate has important
implications for the dynamics of the yidd curve and immunization drategies. As
pointed out by Litterman, Scheinkman and Weiss (1991), the volatility of the short rate
(for example threemonth T-Bill rae) affects the curvature of yidd curvel. In

! Seealso Brown and Schaefer (1995).



paticular, the volatility of the short rate has two counteracting effects on the yidd
curve. Fre, higher volaility of the short rate induces higher expected rates for the
longer maturities (premium effect). Second, higher volaility of the short-term interest
rate increases the convexity of the discount factor function and, therefore, reduces the
yidds for longer maurities (convexity effect). The premium effect dominates a the
ghort end of the yidd curve, while the convexity effect dominates a the long end
making the yidd curve more humped. When regime switching is not consdered,
volatility shocks tend to be very peragent and, therefore, the convexity effect and the
hump in the yield curve could be more pronounced than they ought to be. Gray (1996)
notes that there is evidence for 1) mean reverting high-volaility date with low
volatility persstence, and 2) non-mean reverting low-volaility date with high voldility
persgence in one-month U.S. T-Bill yidds This implies that the shape of the yidd
curve depends upon the dynamics of the short rae, its voldility and the latent volatility
state.

Regime-switching in the volatility process dso has important implications for
hedging. A trader should account for both continuous and discrete shocks to volatility
in computing dynamic hedge ratios. While continuous shocks refer to market-news
events, discrete shocks could refer to the high or low voldility states of the market,
high or low liquidity in the market or high or low sentiment in the market.

In this paper, we follow Bdl and Torous (1995) and Anderson and Lund (1997).
We introduce regime-switching in a two-factor modd, where voldility follows a SV
process. We modd the volaility of short-term interest rates as a stochastic process whose
mean is subject to shifts in regime. That is our switching sochadtic volatility for interest
rates captures dl possible exogenous shocks that could be ether discrete, as occurring
from possble changes in underlying regime, or continuous, in the form of “market news’
events. We estimate our two-factor regime-switching stochastic voldility modd for short-
term interest rates usng a Gibbs Sampling based Markov Chain Monte Carlo dgorithm.
We conduct an extensve in-sample and out-of-sample evaduation of our two-factor mode
agang other two-factor models. In-sample, our modd performs subgantidly better than
the GARCH based two-factor modds and the single-date stochadtic volatility two-factor
models. Out-of-sample, the regime-switching dochediic voldility modd tends to



outperform the other modes. The out-of-sample forecasts from the regime-switching
dochadtic voldility modd, however, are not that different from the single-state stochastic
volatility modd.

The rest of the paper is structured as follows. Section Il introduces our regime-
switching stochadtic volaility (RSV) two-factor model. Section 1l examines the data set
used in this paper. Section 1V discusses the results from estimation. Section V' presents the
insample and out-of-sample comparative performance of the RSV modd. Section VI

summarizes and presents our conclusions.

I1. Two-Factor Modéds and Regime Switching

A common empirical finding in two-factor modes is the high persgsence in the
conditiond variance. For example, Brenner e d. (1996) edimate the persstence
parameter in the conditiond variance equation to be 0.82 usng weekly three-month U.S.
T-Bill data. Ball and Torous (1999) report persstence parameter to be 0.928 using
monthly one-month U.S. T-Bill data, while Anderson and Lund (1997) report volatility
persistence to be 0.98 for weekly three-month U.S. T-Bill data.

High persagtence in the conditiona variance implies that shocks to the conditiond
vaiance do not die out quickly -i.e, current information has a sgnificant effect on the
conditiond variance for future horizons. Lamoreux and Lastrgpes (1990) show that high
persstence could be related to possible structura changes that have occurred during the
sanple period in the variance process. They find tha a sngle-regime GARCH
specification leads to spurious high persstence under the presence of Structurd breeks. By
dlowing for possble regime switching in the data, high perastence observed in the single
regime modds seems no longer vaid. Similar results have been documented by Hamilton
and Susmd (1994), Cal (1994) and So, Lam and Li (1998).

Hamilton (1988) and Driffill (1992), among others, find grong evidence for
regime-switching in the U.S. short-term interest rates. Various macro-economic events
were regpongble for regime switching in the U.S. interest rates. These events include
the OPEC oil crigs, the Federd Reserve experiment of 1979-82, the October 1987
crash and wars involving U.S. and rest of the world. When short rates could switch

randomly between different regimes —i.e., where each regime is associated with its own



mean and variance-, we may find high persstence in the data when we average data
from different regimes. It is the posshbility of a shift in the underlying regime that we
explicitly incorporate in our short-rate process. Next, we introduce a two-factor model
that nests level and stochadtic volatility effects.

Congder the short-term interest rate process described below:

r, - rt_l:a0+alrt_1+me“ a>0

(n(h) - m)=f,(n(h_,)- m+,s 2 h,

m=x, b 1)
In modd (1), r; is the short rate and h is the conditional variance of the short rate, a
captures the levels effect in the modd, mis the saionay mean of the log conditiond, f 1
measures the degree of persstence of conditiona variance, and e; and h; represent shocks
to the mean and to the volatility, respectively. Both shocks are white noise errors, which
are assumed to be didributed independently of each other. We cal modd (1) the Single-
date Stochagtic Volatility (SSV) modd. This modd is used in Bdl and Torous (1999) and
in Anderson and Lund (1997). The esimation of SSV models involves the esimation of
mean parameters {ap, a1} and variance parameters {a, b, sy, f 1}. Note that mode (1)
with a GARCH gpecification ingead of a SV specification for the conditiond volatility
becomes the Brenner et a. (1996) moddl.

Now, let m be a function of the latent date s, which follows a k-state ergodic
discrete firgt-order Markov process as in Hamilton (1988). That is, & a given point in
time, the mean of the log voldility belongs to one of the k daes. A k-date dtationary
trangtion probability matrix governs the dynamics of the trandtion from one dae to the
next sate. This implies that the latent volatility, h, is driven by a continuous shock, hy, as
in (1) above and aso by a discrete shock s that takes on discrete integer vaues {1, 2, ...,
k}. We can ds0 think of our latent volatlity as a mixture of k dendties, where each
dengty corresponds to a sngle date. The latent voldility a a given time comes from a
single density, which is decided by an underlying k- state Markov process. Thet is, our
Regime-switching Stochadtic Valatility (RSV) modd is given by:

— 2a —
M- ey =@, +agr, t/hri e, a=05

(n(h)- m)=f,(n(h) - m )+ s7h,,
m=b+g  g>0 s={12.Kk 2



where myy refers to the state dependent mean of conditiond volatility. The parameter g
measures the sengtivity of the mean with respect to the underlying state and is constrained
to be podtive. The underlying date s can assume k possible states, i.e. one of {1,2, .....k}
where higher values of $ lead to higher intercept terms in the log variance equation. As an
identification condition, we require each regime to correspond to at least one time point.
In addition, and mainly for convenience, we st the level parameter a=0.5, which has been
used in many previous papers? This assumption aso avoids potentid non-stationary
problems associated with a > 1, as shown in Gray (1996) and Bliss and Smith (1998). The
edimation of the RSV modd involves edimation of mean parameters {ao, a1}, variance
parameters {b, g, sn, f1}, and the transtion probability parameters {po1, pio}, Where p
represents the trangition probatility of going from datei to .

In summary, the RSV modd gpecification combines a leve effect and a
conditiond volatility process that captures al possble exogenous shocks. Note that the
RSV modd reduces to the SSV model when there is no regime shift in the data -i.e., when
gisredricted to zero.

A closdy rdaed paper is So, Lam and Li (1998), which uses a switching
dochedtic volaility modd to explan the perssence in the log voldility for S&P 500
index weekly returns.  Using a three-state modd (with high, medium and low volaility
dates), So et d. (1998) find that the voldility date is less perssent, while the low
volaility dtate is more perssent. Our modd dightly differs from So et a. (1998). In our
RSV modd, the drift &'m of the conditiond variance is a function of both current and last
period dates, while in So et d. (1998) the conditiona variance is a function only of the
curent period dae. This difference in our voldility specifications adso leads to
differencesin our likelihood functions and, hence, in our posterior dengties.

Edimaion of the RSV modd involves edimaing two latent varidbles -i.e, h and
S in addition to the mode parameters. In the presence of two laent variables, the
likdihood function for the model needs to be integrated over al the posshle sates of the
two latent varigbles. Jacquier, Polson and Ross (1993) show that maximum likelihood
based methods tend to fal under complex specifications of the likeihood function.
Consequently, we resort to Monte Carlo Markov Chain (MCMC) methods to estimate the

2 For example, Cox, Ingersol and Ross (1985) and Anderson and Lund (1997).



RSV modd.®> Note that Modd 3 can easily incorporate more complicated dynamics. For
example, we can make sy a function of a laent date, or we can specify an ARMA
dructure for the conditiond mean equation (with parameters driven by the latent state), or
we can condder multiple regimes. Our esimation technique can accommodate dl these

extensons.

[I1. Data

The data congss of annualized yields based on weekly observations of three-
month U.S. T-bill data for the period 01/06/60 to 06/03/98 (2003 weekly observations)
and is obtained from the Chicago Federal Reserve's database. Wednesday's rates are used
and if Wednesday is a trading holiday, then, Tuesday's rates are used. Smilar data sets
have been previoudy used by Anderson and Lund (1997) and Gray (1996).

Figure 1 plots the annudized yields and aso the firg differences in yidds based on
weekly observations of threeemonth T-Bill data There are severd episodes of large
fluctuations in nomina interest rates. the oil shocks during 1969-71 and 1973-75, the
Federa Reserve monetary experiment of 1978-82, and the market crash of 1987. This
observation suggests more than a single regime in the data. For instance, we can think of a
high voldility regime during the periods cited aove and a low volaility regime during
res of the periods. We could dlow for an additiond regime, as in Hamilton and Susmd
(1994), to capture outliers in the data Following the exiging switching literature,
however, we limit oursalves to two regimes for the underlying volatility.

The weekly three-morth T-Bill rate (1) is non-stationary®. First differencing makes
the data Sationary. Using Box-Jenkins methods, an ARIMA(1,1,0) mode seems to
provide a satidfactory fit for the autocorrdations in the yidds Following Pagan and
Schwert (1990) and Bal and Torous (1995, 1999), we fit the RSV modd (2) to the
resduads (RES;) from regressng Dr; on a constant and Dr.1. For the purpose of estimation
and comparison to dternative volatility models, we write our mean adjusted verson of the
RSV modd as

8 Appendix A gives the details of our MCMC estimation and Appendix B presents the results of a
simulation experiment using our estimation method.

4 ADF tests could not reject the null of aunit root in theyield series.



Drt - (aAo +aAlDrt-1)0 RES
RES =+/hr*e, a=05

(nth)- m )=, (nh.)- m )+ 57 h,,
m =b+g, g>0 s={12 3

where al the assumptions on the error terms made in (2) ill hold. Again, note that when
we set g to zero, the RSV mode reduces to the SSV model.

Table 1 presents the summary datigtics of the data. Changes in yidds, Dri, seem to
be left skewed indicating that periods of high T-Bill returns were less common compared
to periods with low returns. There is dso a strong evidence of kurtoss in the return series.
The Ljung-Box datistic suggedts tha there is a high degree of autocorrelation for the raw
yieds (r;). There is a very high persstence in the raw series. On the other hand, Dr; series
seems to be much less pesgent and is characterized by low autocorrdaions. High
autocorrdaion in the two series (Dry)®> and log(Dr,)? suggests the kind of nontlinearity in
the data that can be explained by a SV mode. Table 2 presents the results from GARCH
tests on the data. We report the Ljung-Box datistic for the squared residuds (RES?) at
variouslags. The null of no GARCH effectsis strongly rejected by the data

V. Resultsfrom the Stochastic Volatility models

To benchmark our results fird, we ignore the posshbility of regime-switching in
the data. The results from the MCMC egtimation of the SSV moded are presented in Table
3, where the parameter set is q = {b, f, sn}. The perastence parameter f is vey high
indicating thet the hdf-life of a volatility shock, meesured as -In(2)/n(f ), is about fourteen
weeks. Standard errors for the parameters are smdl indicating that parameters are highly
ggnificant. Figure 2 plots the pogterior dendties of the parameters. All the parameters
have symmetric dendties while hdf-life dengty is rignt skewed indicating that haf-lives
longer than fourteen weeks are more common.

We, next, edimate the RSV modd for our weekly interest data set. Table 5
presents the prior and posterior parameter estimates of the parameter set q in our modd,

where q = {b, g, f, S n, po1, P1o}. Standard errors for the parameters are small as before.



The persstence parameter, f, drops dgnificantly to 0.628 from 0.951 in the SSV modd.
This implies that a switch in the latent regime creetes a high persstence in volatility and
confirms the earlier results of Hamilton and Susmel (1994), Ca (1994) and So, Lam and
Li (1998). The didribution of f is left skewed with a median 0.647 (see Figure 3),
implying that even lower peragtence than 0.628 is common. The trandtion probabilities
Poo and pi1, are estimated as 0.994 and 0.966. These estimates are comparable to 0.9896
and 0.9739 respectively reported in Gray (1996) and 0.9878 and 0.9402 respectively
reported in Ca (1994). Our results imply that the effect of a volatility shock is much more
persgent in the low volaility sate than in the high volatility sate. A volatility shock lagts
on average of, at least, 100 weeks in the low volatility state compared to about 30 weeks
in the high voldility state, where duration of the shock is obtained as (1-p;;)*. Figure 3
plots the Gaussan kernd dendties for the poserior parameter estimates. The posterior
dengties seem to be symmetric for b and g and right skewed for s y (with a median 0.897).
Figure 4 plots the Gibbs parameter estimates from 1200 runs (details in appendix A).
Gibbs runs indicate no autocorredtion in successve draws. Figure 5 plots autocorreations
for the parameters. The autocorrdations become inggnificant at very early lags implying
that the Gibbs draws are drawn at random.

Tables 4 and 6 present the corrdations between the parameters. Both Tables 4 and
6 report strong negative correlation between b and f, and f and s,. Table 6 aso reports
strong positive correlations between b and g, and b and s . Together, these results imply
that 1) as the variance perdstence decreases the unconditiona variance -i.e, the long-run
mean of In(h)- increases, 2) large volatility shocks are not as persgent as smal volatility
shocks and 3) large volatility shocks tend to be associated with higher long-run mean
compared to small volatility shocks.

The fird two panes of Figure 6 plot the T-Bill yidds and the resduds from a
regresson of Dr; on a constant and Dry.1, respectively. The third pane plots the underlying
annudized voldility (generated by a multi-move smulation smoother), and the fourth
pand plots the smulated smoother probabilities of being in high voldility dae, i.e,
Prob(s: =1). Following Hamilton (1988), we consider an observation as belonging to state
one if the smoothed probability is higher than 0.5. The smulation smoother shows periods
of high volatlity during the oil shocks of 1969 and 1973, the 1979-83 Federal Reserve
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monetary experiment, and the market crash of 1987. The smoother probabilities indicate
that there is a large probability that the T-Bill yidds during 1969, 1973, 1979-82, and
1987-88 bdong to a high voldility regime. This dating is in agreement with the dating
reported by Cal (1994) and Gray (1996).

V. Performance of the RSV Model

We oconduct an extensve evaudion of the in-sample and out-of-sample
peformance of the SV two-factor models and other two-factor models, based on the
GARCH family of modds. We congder three popular GARCH modds GARCH(1,1)
mode, GARCH(1,1)-L modd -i.e, GARCH(1,1) with an asymmelry effect of negative
lagged errors, to capture the leverage effect- and EGARCH(1,1) modd. The firss GARCH
modd is the formulation used by Longgtaff and Schwartz (1992). The second and third
GARCH modds retain a leverage effect, as in Brenner et d. (1996). All the GARCH
models are specified to include a level effect (for specifications see Table 7). The MLE
results for the three GARCH modds are presented in Table 7. There is evidence for a
leverage effect based on the sgnificant t-gatigtic for k in the GARCH(1,1)-L mode and
the dgnificant t-datidtic for d, in the EGARCH(1,1) modd. The leverage effect, however,
is andl rddive to the usud dze found in equity returns All the edimaes in the
conditional variance equation are sgnificant for the three models. Note that the estimates
show the usua high persstence in the conditiona variance.

We extract one-week(step)-ahead in-sample forecast variances from the single
date and regime-switching two-factor models and compare them to other modeds. In
addition to the full sample period, 01/06/60-06/03/98, we consider three sub-sample
periods. The three sub-sample periods are: (1) 01/06/60-31/12/78, (2) 01/06/60-31/12/82,
and (3) 01/06/60-31/12/91. The fird sample includes the oil shocks, the second sample
includes the Fed monetarist experiment of 1979-82, and the third sample includes the
October1987 stock market crash. Based on the estimates for the three sub-samples, we
edimate out-of-sample forecasts until the end of the sample We adso consder shorter
samples and shorter out-of-sample forecast periods. As an example, we include a fourth
sample 01/01/76-31/12/87, which dlows an evduation of the performance of the mode in
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a shorter data set. This forth sample has two wel defined spdls of high voldility: the Fed
experiment and the October 1987 stock market crash.

Figures 7 and 8 show the in-sample (annudized) conditiond volatilities implied by
dl the modds The conditiond voldilities from two-factor modds are reatively less
smooth compared to those from the GARCH type models. This is because the two-factor
models are more sendtive to shocks. For example, the RSV two-factor mode picks up an
outlier in late 1982, which goes undetected by the other models.

Table 8 shows the likdlihood function for al the models. The RSV has the biggest
likdihood. Unfortunately, the GARCH modds and the SSV modds ae not nested.
Therefore, standard likelihood ratio tests are not correct. In addition, standard likelihood
ratios cannot be used for the SSV modd and the RSV mode since there are unidentified
parameters under the null hypothess of no-switching -see Hansen (1992). Therefore,
Table 8 shows four different in-sample evaudion criteria for the different models. The
dochadtic volaility models peform better than al the GARCH modds and the SSV
modd. In particular, the RSV modd has a higher likdlihood function, higher adjusted R?,
and higher AIC/SBC vdues redive to the GARCH models ad the SV modd. Table 8
aso reports posterior odds ratios of the competing modd with respect to the constant
variance mode —see Kim and Kon (1994). If the odds ratio is pogtive, then the competing
modd is “more likdy” to have generated the data than the congant variance mode. The
model with the highest vadue of poderior odds ratio represents the “most likely”
competing model  specification. The dochedtic volatility models have higher odds ratios
than GARCH modes. In particular, the RSV modd has an odds ratio at least 56% higher
than the other competing modds. Among the two-factor GARCH modds, with the
exception of the Adjusted R? criteria, the E-GARCH(1,1) performs better than the other
models for dl the evaluation measures. The EGARCH(1,1) is dso the mode used by Bal
and Torous (1999) to evauate the in-sample evauation of the SSV modd. Based on these
congderations, the EGARCH(1,1) is the GARCH modd we sdect to evauate the out-of-
sample performance of the SV modedls.

Table 9 presents insample and out-of-sample one-step ahead forecasts for al the
models for the four different sub-samples. We present the mean squared errors (MSE) and
mean absolute errors (MAE) for the SSV modd, the RSV modd, a congtant volatility



moded, and for the best peforming GARCH modd, the E-GARCH(1,1). We keep a
condant volatlity modd in our out-of-sample comparison, given the results in Figlewski
(1997), where the congant volatility performs wel rdative to GARCH modes. Table 9
shows that the RSV modd tends to outperform the GARCH and SSV modeds. Congstent
with the inrsample results of Table 8, the RSV modd adways bests in-sample the other
formulations. Out-of-sample, the RSV tends to do better than the EGARCH and SSV
mode. The out-of-sample performance of the RSV mode, however, is smilar to the out-
of-sample performance of the SSV modd. Consstent with Figlewski (1997), the congtant
variance modd shows a good out-of-sample performance, especidly in the MSE metric.
Note that the congtant variance modd in the fird sub-sample bedats al the other modds.
The E-GARCH modd never peforms better than the SV modds. The last sub-sample
presents a short period of out-of-sample forecasts, only one year. Again, the RSV modd is
the dominating modd.

VI. Conclusions

In this paper, we introduce regime-switching in a sochadic volatlity modd to
explan the behavior of short-term interest rates. The regime-switching stochadtic
volatility process for interest rates captures al possible exogenous shocks that are
gther continuous in the form of "market-news events or discrete as occurring from
possble changes in underlying regime. We introduce the regime-switching stochastic
volatility process in a two-factor modd for the short-term interest rate. We estimate the
two-factor moddl usng a Gibbs Sampling based Markov Chan Monte Carlo adgorithm
that is robust to the usua non-lineaities in the likdihood function. We find that the
usud high volaility perastence is subgantidly reduced by the introduction of regime-
switching. We conduct an extensve in-sample and out-of-sample evaduation of severd
two-factor models. We use severd sub-samples and different evaduation criteria to
compare the RSV modd with other GARCH modds and single-state stochastic
volatility modd. Overdl, our results are very supportive of our RSV two-factor modd.

® For the fourth sample, we also calcul ate (not reported) out-of-sample forecasts for atwo-year period and a
ten-year period. Overall, the results are similar, although as the out-of-sampl e forecasting period is extended,
the performance of the SSV model becomes very similar to the performance of the RSV model.
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Insample and out-of-sample, the RSV modd tends to outperform dl the other two-
factor models.
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Appendix A: The GibbsAlgorithm for Egtimating RSV Model

In the RSV mode (2), we need to estimate the parameter vector q ={b, g, sn, f 1,
Po1, Pio} dong with the two latent variables Hy = {hs,...h} and S ={s,.....s}. The
parameter set therefore conssts of w = {H;, &, g} for dl t. We use Bayes theorem to
decompose the joint posterior density as follows.

F(H,, Sna) 1 F(Y,[H,) F(H,[S.a)f (S[a)f @)

We next draw the marginds f(Hi| Yi, S 0), f(S[Yt,H,0) and f(qlY:, He S), using the
Gibbs sampling agorithm described below:
Step 1
Specify initidl vauesq© ={b1?, ¢, s 1, 1@, ;@ p1p @ }. Setii =1.

Step 2:

Draw the undelying volaility usng the multimove smulaion sampler of De Jong and
Shephard (1995), based on parameter values from step 1. The underlying volatility vector
for dl the daa points is obtained as a function of underlying disturbances that are drawvn
asablock usng asmulation smoother. Consider the RSV mode (3), reproduced below:

Dr, - (éo +élDrt-1) ° RES
RES =./hr%e, a=05

(nth)- m)=t.(n(h.)- m )+ 57 h,,
m =b+g, g>0 s={12 &)

The conditiona mean equation can be written as,
In( RES?) = In(h,) +In(r, ,) +In(e?) (A-1)

The tem In(e®) can be approximated by a mixture of seven norma vaiates (Chib,
Shephard, and Kim (1998)).

In(e®)=z2
f(;):é fN(zi|mi - 1.2704,\/3) i ={12,..7} (A-2)

15



Now, (A-1) can be written as
I(RES?) =In(h,) +In(r, ;) +[z k. =i] (A-3)
wherek; is one of the seven underlying densties that generates z. Once the underlying
densties ki, for dl t, are known, (A-3) becomes a determinigtic linear equation and along
with the RSV modd (3) can be represented in alinear state space model. Next, apply the
De Jong and Shephard (1995) smulation smoother to extract the underlying log volatility
from the observed data.

Step 3
Based the on output from steps 1 and 2, the underlying k; in (A-3) issampled from
norma digribution as follows -see Chib, Shephard and Kim (1998):

flzaInCy2). nh) £y (zn(h) +m, - 1.2704,v2) i £k (A-4)
For every observation t, we draw the norma densty from esch of the seven normd

digributions {ki = 1,2,..,7}. Then, we sdect a “k” based on draws from uniform
digtribution.

Step 4:
Based on the output from steps 1, 2 and 3, we draw the underlying Markov-state
following Carter and Kohn (1994). We use the smoother for the above state-space model
(3), to derive the vector of underlying sate varidble s, t =1,2,...,n

Step 5:
Cycle through the conditionas of parameter vector g ={b, g, Sn, f 1, po1, P10} for the
volatility equation usng Chib (1993), using output from steps 1-4. Assuming that f (g) can
be decomposed as:
f@lY,H,S)u f(b
f(f

Yo Ho, S0, T(9
Yn’Hn’Sniq-f)f(pOUplO n'Hnisn'q-pij) (A_5)

where q; refers to the q parameters excluding the jth parameter. The respective

Yy Ho S,.0.) (s %Y, H,. S0 )

conditiona distributions (norma for b, gand f, inverse gamma for s? and beta for n;) are
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described in Chib (1993). The parameter g is drawn usng an inverse CDF with the
redriction that it is podtive. The prior means and dandard deviaions are Specified in
Tables3 and 5.

Step 6: Go to step 2.

Edimation of SSV modd @) has the same steps as in RSV modd (3), except that we do
not have to draw the latent states and transition probabilities. For the Gibbs estimation, we
leave out the first 4000 draws (i.e., burn-in iterations are 4000) and sample from the next
6000 draws. We choose every fifth observation to minimize, and if possble diminate, any
possible correlation in the draws. Our effective number of draws therefore drops to 1200
(i.e, effective test iterations are 1200). We congtruct 95% confidence intervals for the
parameters, based on 1200 draws. We construct the standard errors for the parameters
usng the batch-means method -see Chib (1993). We edtimate the dendty functions for the
parameters using the Gaussian kernd estimator -see Silverman (1986).
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Appendix B: Monte Carlo Experiment with the Gibbs Algorithm

We peform a Monte Carlo experiment of the RSV mode (3), without level effects. That
is

RES, =./he,
(n(h)- my)=f.(n(h..) - m, )+ 452 he,
m =b +gs, g>0 s ={12}

Using the trandtion probabilities py; and po; , We generate a state vector (with values O or
1) of g9ze 1000. Using the dtate vector and the “trug’ parameters b, g, sn, and f 1, we
generate stochadtic voldility, In(h). Based on the above modd, the stochadtic volatility
series is used it to generate the resdud vector, RES;. (All the true parameter vaues used
in the smulation are lised below.) Then, taking RES; as given, we estimate the parameter
st q ={b, g, Sh, f1, po1, P10} usng the MCMC agorithm as explained in appendix A. We
st the number of burn-in iterations equa to 4000 and the number of effective test
iterations equa to 1200. Thus, we congruct the 95% confidence intervals for the
parameters based on 1200 draws. We congtruct the standard errors for the parameters
using the batch-means method -see, Chib (1993). The results are reported in Table B.1.

TableB.1
Results from a Monte Carlo experiment

T ( sample size) :1000

parameter True Prior Values Posterior Values
values
Mean Std. deviation Mean ( std. Error)  Std. deviation 95% Confidence Interval
b 0.7 0 50 0.759 ( 0.003) 0.112 (10.500- 0.986)
g 1.5 1 50 1.477 (0.018) 0.191 (1.051 -1.819)
f 0.4 0 1 0.391 (0.005) 0.085 (0.202- 0.054)
s? 0.6 - - 0.733 (0.005) 0.109 (0.538 - 0.976)
Po1 0.01 0.2 0.16 0.011 (0.000) 0.007 (0.003-0.035)
Pro 0.04 0.2 0.16 0.074 (0.003) 0.036 (0.026-0.166)

*Prior distribution of s? (inverse gamma) isimproper

We find that the posterior means of parameters are quite close to the true values.
The dandard errors are small, indicating a high precison of the posterior means. For the
variance and the trandtion probability p., the posterior means are dightly higher than true
vaues. However, they clearly lie within the 95% confidence bounds.
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Figure B.1 shows the laent volaility and Sates. The top pand consgds of
gmulated resduas RES;. The second pand presents both the true and latent volatility, the
latter obtained using the smulation smoother. The third pane presents the true dates —i.e,
gther 0 or 1- and smoother probabilities of being in the high volatility state. From the
second and third pands, we see tha the smoother volatility and probabilities closdy

gpproximate their true counterparts.

FigureB.1. Smulated Yields and Corresponding L atent Volatility and States
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Tablel
Summary statistics for weekly interest rates on 3-month T-Bills for the period 1/06/60 to 06/03/98

It Dr: (D)’ log (Dr.)*
Mean 6.0436 0.00018962 0.048828 -5.6721
Standard error 0.060171 0.0049374 0.0044547 0.057084
Variance 7.2591 0.048852 0.039769 6.5302
Standard error 0.31925 0.0044540 0.0083140 0.20325
Skewness 1.2504 -1.0377 8.3522 -0.25630
Standard error 2.0700 0.0055073 0.019342 0.71194
Kurtosis 48781 17.658 88.586 2.9414
Standard error 22.157 0.0086464 0.049010 6.6579
Ljung-Box (24) 17334 12.018 100.96 190.78
Notes:

Ljung-Box (24). Ljung-Box statistics cal culated with 24 |ags. c2(24) critical value for a 95%
confidence level is36.4.

Table?2
Tests for GARCH effects in weekly interest rates on 3-month T-Bills for the period 1/06/60 to
06/03/98
Lag Ljung-Box Statistic C(1ag) Stetistic
(195% confidence level)

6 186.68 12.6

12 137.30 21

18 109.40 28.9

24 104.47 36.4

36 104.79 55

Notes:
We obtain the residuals (RES;) from regressing Dr; on a constant and Dr.; and report the Ljung-

Box statistics for the squared residuals at different lags. The Ljung-Box statistic for squared
residualsishighly significant at all lags.
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Table3
Results from the MCMC estimation of the Single-State Stochastic Volatility (SSV) model
using weekly 3-month T-Bill yidds for the period 01/06/60 to 06/03/98

parameter Prior Values Posterior Vaues
Mean  Standard Mean ( std. error) Standard 95% Confidence Interval
Deviation Deviation
b 0.05 1 2.831 (0.020) 0.219 (2.366- 3.235)
f 0 10 0.951 (0.000) 0.009 (0.932- 0.969)
s? - - 0.190 (0.002) 0.023 (0.150- 0.241
Notes:

The SSV model used in Table 1 (Model 1):
Dr,- @, +a,Dr,,) ° RES,

RES, =4/hr%e, a=05

(n(h)- m)=f,(n(h.)- m )+ /s 7 h
m=Db

The sample sizeis 2003. Prior distribution of s* (inverse gamma) isimproper. Details about the
model estimation are in appendix A.

Table4
Correlation matrix of the parameters for the SSV model using weekly 3-month T-Bill yields
for the period 01/06/60 to 06/03/98
[ Parameters b s® f |
b 1 0.030 -0.202
s? 0.030 1 -0551
f -0.202 -0.551 1
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Tableb

Results from MCMC estimation of the Regime-switching Stochastic Volatility (RSV) model
using weekly 3-month T-Bill yields for the period 01/06/60 to 06/03/98

Parameters Prior Vaues Posterior Vaues
Mean Standard | Mean ( std error) Standard 95% Confidence
Deviation Deviation Interval

b 0 50 2.580 (0.001) 0.098 (2.378- 2.769)
g 1 50 2.746 (0.022) 0.247 (2.258 -3.220)

f 0 1 0.628 (0.001) 0.046 (0.526- 0.708)
s? - - 0.931 (0.002) 0.123 (0.726-1.207)
Po1 0.2 0.16 0.006 (0.002) 0.003 (0.002- 0.013)
P1o 0.2 0.16 0.034 (0.002) 0.013 (0.014- 0.063)

Notes:

The RSVmodd isestimated in Table 5 (Model 3):
Dr, - (éo +élDrl-1)0 RES,

RES, =,hr%e, a=05

(nthy- m)=f,(nth, )- m )+ sZh,,
m =b+g,  g>0 s={12}

The sample sizeis 2003. Prior distribution of s® (inverse gamma) isimproper. Details about the
model estimation are in appendix A.

Table6
Correlation matrix of the parameters for the RSV modd using weekly 3-month T-Bill yieds
for the period 01/06/60 to 06/03/98

| parameters b g s® f a:Po B: puo
b 1.000 0.606 0.501 -0530 0.077 0.170
g 0.606 1.000 0424 -0.373 -0.179 -0.105
s? 0501 0424 1.000 -0.766 0.236 0.340
f -0530 -0.373 -0.766 1.000 -0.240 -0.382
a:Por 0.077 -0.179 0.236 -0.240 1 0414

b: po 0.170 -0.105 0.340 -0.382 0414 1
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Table7

Results from MLE estimation of GARCH models using weekly 3-month T-Bill yields for the

period 01/06/60 to 06/03/98
a 0 k d 1 d 2 a 1 bl
GARCH(1,1) 0.7763 - - - 0.0231 0.8514
(5.110) - - - (7.164)  (47.012)
GARCH(L1)-L| 0.7866 0.0094 - - 0.0192 0.8469
(5.150) (2.566) - - (65007)  (46.993)
EGARCH(1,1) 0.0536 - 0.1441 -0.0193 - 0.9441
(2.8021) - (115671)  (-34341) - (128.91)
Notes:

t-statistics are reported in parenthesis.
Model specifications:
GARCH(1,1) with level effect:

Dr, - (aAo + a’\lrt-l) ° RES,

RES , = «/htrfi e, a =0.5 (e, |W,,)~ N(02)

ht:a0+alut2-l+blht»l t>1
h,= —20
l1-a,- b,
GARCH(1.1)-L with level effect :
Dr, - @, +a,r_,)° RES,
RES, = 4/hr*e,, a =05 (e |W,_,)~ N(02
ht :aO+kdt—1ut2—1+a1ut2—l+blht—l t >1

10if u_, >0 a,

t=1

d_ :l i =
"t 4ifu,, £0 ! 1—k——a1—b

EGARCH(1.1) with levels effect:

Dr, - ( Ao + dlrt—l) ® RES,
RES, = +/hr%e, a =05 (e |W_,)~ N(01)

20
In(h) =a, +dl§<t_l|— \/p:?- dx,,+b/In(h ;) t>1

2

- S — a,
O L R e

t=1
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Table8

I n-sample comparison of aternative models for the entire sample period
01/06/60 to 06/03/98 (sample size: 2003)

number of Log- AIC SBC Ad R Odds
parameters  Likdihood ratios
Constant Variance 1 -8589.23 -8590.23 -8593.03 -0477 -

GARCH(1,1) 3 -7965.81 -7968.81 -7977.22 0.222 623.42
GARCH(1,1)-L 4 -7962.05 -7966.05 -7977.25 0.205 627.18
EGARCH(1,1) 4 -7953.13 -7957.13 -7968.34 0.220 636.1
SSV model 3 -7825.64 -7828.64 -7837.04 0.405 763.59
RSV model 6 -7397.39 -7401.39 -7412.60 0.602 1191.84

Notes:
AIC: log-likelihood value less number of parameters
SBC: log-likelihood value less 0.5 log (T* number of parameters)
where T: samplesize

éT_ [REStZ ~h, ]2

MSE: 2
=
g
a|res?- n|
MAE, 2=+
=

Adj R%: Adjusted R? is calculated for the regression Res? =a+bh, +u, u~N(01) {t=1,....N},

where RES; are the residual's from regressing Dr against constant and Dry.1 and h; {t=1,....N} are
conditional volatility estimates

Oddsratio: the posterior odds ratio of alternative specifications relative to the constant variance. Thisis
obtained as difference of the Schwartz Bayesian Criterion (SBC) of each competing model and the SBC of the
constant variance model —see, Kim and Kon (1994).

All the models used here are described in Tables 3-7.



Table9

In-sample and out-of -sample comparison of aternative models for three different sample periods

| Sample 1

In-sample (T: 990)
01/06/60-31/12/78

Out-of-sample (T:1012)
01/01/79-06/03/98

MSE MAE Adj. R° MSE MAE
Const. Variance 0.0109 0.0266 -0.0495 0.0702 0.0682
EGARCH(1,1) 0.0104 0.0255 0.104 0.0707 0.0694
SSV model 0.0104 0.0255 0.409 0.0706 0.0688
RSV model 0.0099 0.0243 0.615 0.0705 0.0685
| Sample 2 |

In-sample (T: 1199)
01/06/60-31/12/82

Out-of-sample (T:803)
01/01/83-06/03/98

MSE MAE Adj. R MSE MAE
Const. Variance 0.0661 0.0714 -0.0671 0.0025 0.0132
EGARCH(1,1) 0.0621 0.0679 0.210 0.0027 0.0130
SSV model 0.0628 0.0680 0.485 0.0026 0.0126
RSV model 0.0616 0.0668 0.612 0.0026 0.0123

| Sample 3 |

In-sample (T: 1668)
01/06/60-31/12/91

Out-of-sample (T:334)
01/01/92-06/03/98

MSE MAE Adj. R MSE MAE
Const. Variance 0.0489 0.0561 -0.0562 0.0002 0.0067
EGARCH(1,1) 0.0461 0.0538 0.212 0.0001 0.0049
SSV model 0.0464 0.0538 0.481 0.0001 0.0047
RSV model 0.0458 0.0532 0.603 0.0001 0.0047

| Sample 4 |

In-sample (T: 626)
01/01/76-31/12/87

Out-of-sample (T:104)
01/01/88-31/12/89

| MSE MAE  Adj. R MSE MAE |
Const. Variance ~ 0.1133 ~ 0.1081  -0.0993 0.0003 0.0119
EGARCH(1,1) ~ 01090  0.1054  0.221 0.0005 0.0128
SSV model 0.1082  0.1051  0.494 0.0005 0.0124
RSV model 01031  0.1014  0.554 0.0003 0.0115

Notes:

T: refersto the sample size.
The best model is highlighted.

é[REsz -

MSE:
-
3 2
& |RES? - h|
MAE: =
T

The estimated coefficients from the in-sample period are used to generate one-week (step) ahead conditional



volatility estimates for the out-of-sample period. One-step ahead conditional volatility forecasts are generated
using the following equations (based on the GARCH models defined under Table 7 and the SV models 2 and 3):

GARCH(1,1):

2 _ 1 2

S fest =Wo +(@1+bg)¥ (S Ggy - Wo)
where

ay

Wy =————
0 1-a;- b,

GARCH(1,1)-L:

k
2 _ 1, 2
St+s|t_W0+(al+b1+E)S (S Caae - Wo)

where
a
Wo = 0 -
1' al = bl = ?
EGARCH(1.1):

IN( fgp) =Wo +(by) > (ING Ggy ) - Wo)
where
ay

Wh =
°71- b,

SSV_mode:

IN(s ) = M+ (F,)°(N(s () - M)

RSV_modd:

|n(S t2+s|t) = [I n(S tis|t)| pr(st+s = 0 | St+s—1)], pr(st+s = Ol St+s—1) +
[In(S t2+s|t )| pr(st+s = 1| St+s-1)], pr(SHs :1 | SI+s—1)
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Figure 1. Weekly 3-month T-Bill percentage yields

(Sample: 01/06/60 to 06/03/98)
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Figure 2. Posterior Density Plotsfor Parameters of the SSV Modél
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Figure 3. Posterior Density Plotsfor Parameters of the RSV model
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Figure 4. GibbsRun for Parameters of the RSV Moddl
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Figure 5. Autocorrelation Functionsfor Parameters of the RSV Mode
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Figure 6. T-Bill Yiddsand Corresponding Latent Volatility and States
(Sample: 01/06/60 to 06/03/98)
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Figure 7. Comparison of in-sample Conditional Volatilities Across Different Models
(Sample: 01/06/60 to 06/03/98)
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